RBAC vs. ABAC in Azure: Why You Need Both for Cloud Access Control That Actually Works

Let’s cut to the chase, cloud access control isn’t just a checkmark on your compliance list anymore. It’s a daily battlefield. With global teams, hybrid workloads, and rising security risks, who can do what and under what conditions is now a core pillar of IT strategy.

If you’re working in Azure, you’ve likely heard of RBAC (Role-Based Access Control) and ABAC (Attribute-Based Access Control). But what you may not know is that these aren’t mutually exclusive instead they’re better together.

Let’s unpack what each model does, where they shine (and struggle), and how to combine them for airtight, scalable access governance in Azure.

What is Azure Role-Based Access Control (RBAC)?

Azure RBAC helps you control access by assigning roles to security principals (users, groups, service principals, or managed identities) at a specific scope (subscription, resource group, or resource).

Each role is a bundle of permissions, think of them as job descriptions for Azure resources.

Example RBAC Use Cases

  • A user who can manage only virtual machines in the Dev subscription.
  • A group assigned the Reader role at the resource group level.
  • An app given Contributor access to only one storage account.

RBAC works well when your access needs are role-based and relatively straightforward. But as organizations scale and become more dynamic, things can get messy fast.

Where RBAC Falls Short

RBAC starts to creak when:

  • You need to create roles for every unique mix of region, team, and resource.
  • You end up with a Frankenstein monster of roles like:
    • VP - Europe
    • Manager - Asia
    • SalesRep - NorthAmerica - Junior
  • You have hierarchical or multi-tenant data structures that don’t fit RBAC’s flat model.

The result? Role sprawl, administrative pain, and security gaps.

What is Azure Attribute-Based Access Control (ABAC)?

ABAC adds contextual smarts to access control. Instead of relying solely on roles, it factors in attributes of:

  • The user (e.g., department = HR)
  • The resource (e.g., tag = Project:Alpine)
  • The environment (e.g., access during business hours only)

In Azure, ABAC is implemented through role assignment conditions that filter RBAC permissions.

ABAC in Action

  • “Chandra can read blobs only if they’re tagged with Project=Cascade.”
  • “Support engineers can impersonate users only during a help session.”
  • “Users can access data only in their assigned region or cost center.”

This kind of fine-grained access is powerful, flexible, and crucial in multi-tenant, regulated, or fast-moving environments.

RBAC + ABAC: Not a Choice – A Collaboration

Here’s the mindset shift: RBAC and ABAC are not competing models. They’re complementary.

RBAC defines what actions are allowed.
ABAC defines under what conditions those actions are allowed.

By combining the two, you can:

  • Keep your role structure simple and understandable.
  • Layer on access conditions that reflect real-world business rules.

Common Hybrid Patterns

ScenarioRBAC RoleABAC Condition
Multi-tenant appTenant AdminOnly for tenant_id=X
Regional accessSales ManagerRegion = “North America”
Subscription tiersPremium UserAccess feature only if plan=premium
File accessEditorOnly owner=user_id or shared_with=user_id
Support scenariosSupport AgentImpersonation allowed if user_in_session=true

Best Practices for RBAC and ABAC in Azure

Let’s bring it home with the golden rules:

RBAC Best Practices

  • Least Privilege Always: Grant only the permissions needed—nothing more.
  • Limit Subscription Owners: Three max. The fewer, the safer.
  • Use PIM for Just-in-Time Access: With Microsoft Entra PIM, elevate access temporarily.
  • Assign Roles to Groups: Not individuals. Makes scaling and auditing easier.
  • Avoid Wildcards in Custom Roles: Be explicit with Actions and DataActions.
  • Script with Role IDs, Not Names: Avoid breakage from renamed roles.

ABAC Best Practices

  • Tag Strategically: Use meaningful tags like Project, Environment, or Classification to enable ABAC.
  • Use Conditions to Reduce Role Sprawl: Filter access with precision.
  • Start Small: Pilot with blob storage conditions before scaling ABAC elsewhere.
  • Don’t Replace RBAC: Use ABAC as a filter, not a replacement.

Recap: When to Use What

FeatureRBACABACRBAC + ABAC
Simplicity
Contextual Flexibility
Scalability⚠️ (sprawl risk)
Multi-Tenant Scenarios⚠️
Least Privilege Enforcement✅✅

Final Thoughts

RBAC gives you structure. ABAC gives you nuance. In Azure, using both gives you power and precision.

Don’t fall into the “either/or” trap. The real magic happens when you combine the predictability of RBAC with the intelligence of ABAC to build access models that scale with your business.

Thanks for stopping by. ✌

Avoid the Oops: Proactively Monitor Entra Application Secret Expirations with Automation

In the fast-paced world of enterprise IT, even small oversights can lead to major disruptions. One of those easily overlooked, yet critically important tasks is, monitoring Microsoft Entra (formerly Azure AD) application secret expirations.

Imagine this: everything is running smoothly in production until — bam! — an app suddenly fails because its secret expired. No alerts, no heads-up, just user complaints and a flurry of incident reports. Sound familiar?

Why Monitoring Application Secrets Matters

At its core, application secrets are credentials that apps use to authenticate themselves with Microsoft Entra ID. But unlike passwords, secrets come with an expiration date. If they aren’t renewed in time, the app’s authentication fails and with it, the business processes it supports.

For organizations running dozens (or hundreds) of app registrations, staying ahead of these expirations is not optional, it’s essential. Secrets that silently expire can grind systems to a halt, disrupt integrations, and worst of all, trigger security incidents or SLA breaches.

A Common Problem in the Real World

When I first set out to automate monitoring for app secret expirations, I assumed it’d be simple. A few PowerShell lines here, an API call there, maybe some Logic App magic… problem solved, right?

Well, not quite.

Most of the tutorials and blog posts I found focused solely on fetching the expiration date of secrets — they showed how to query the data, but not how to operationalize it. I wanted something that would proactively notify the right people before things went south.

Eventually, I came across a helpful post on Microsoft Tech Community:
Use Azure Logic Apps to Notify of Pending AAD Application Client Secrets and Certificate Expirations

It was a solid foundation. The Logic App would periodically check secrets and send an email notification if one was nearing expiration.

But then… I hit a snag.

If an application had multiple owners which, in the enterprise world, is very common the Logic App would only notify the first listed owner. Everyone else? Left in the dark.

Not ideal. Especially when that one person is on PTO, has left the company, or, let’s be honest, just ignores emails from IT.

So, I decided to roll up my sleeves and build a PowerShell-based solution that:

  • Queries all app registrations
  • Checks for secrets or certificates nearing expiration
  • Looks up all owners (not just the first one)
  • Sends clear, actionable email notifications to each owner

Why Automate This? Let’s Talk Benefits

Here’s why every enterprise IT team should care about automating secret expiration alerts:

  • Proactive Security – Timely notifications help you spot secrets that are about to expire, before they become a security risk or business disruption. It’s the difference between being reactive and being prepared.
  • Reduced Downtime – Missed secret expirations lead to failed authentications, which means broken apps. Proactive alerts buy you time to renew secrets and avoid outages.
  • No More Manual Tracking – Maintaining a spreadsheet of app secrets? Been there. Done that. Automation means less grunt work and fewer mistakes.
  • Smart Notifications – By targeting all app owners, not just the first in line: you’re covering your bases. Even if someone’s on vacation, someone else sees the alert and can take action.

What This Script Does

  • Authenticates to Microsoft Graph with the required permissions
  • Queries all Entra app registrations
  • Identifies app secrets and certificates that are expiring within a defined threshold (e.g., 30 days)
  • Pulls all assigned owners for each app
  • Sends an email notification to each owner with details about the impending expiration
  • Sends an email notification to an administrator email, a distribution group or a shared mailbox containing a list of all secrets that are expiring

Use task scheduler to run this script from your on-premise environment. You can securely store the credentials to be used in the PowerShell script using the SecretManagement module. I’ve covered this in detail in an earlier post here. The ideal and preferred method is to use Azure automation account which is much more easier and secure, which I will cover in a future post.

# Connect to Microsoft Graph
Connect-MgGraph -Scopes "Application.Read.All","User.Read.All","AppRoleAssignment.Read.All"

# Set default value for the number of days until expiration
$DaysUntilExpiration = 30

# Email configuration
$SmtpServer = "smtp.yourdomain.com"
$From = "alerts@yourdomain.com"
$DefaultEmail = "entra_app_cert_notif@yourdomain.com"

# Function to send email
function Send-ExpirationAlert {
    param (
        [string]$To,
        [string]$FirstName,
        [string]$AppName,
        [string]$SecretOrCertName,
        [string]$SecretOrCertId,
        [datetime]$EndDate
    )

    $Subject = "Alert: Secret or Certificate Expiration Notice for $AppName"
    $Body = @"
<html>
<body>
<p>Hello $FirstName,</p>
<p>This is a notification that the secret or certificate named '$SecretOrCertName' for the application '$AppName' will expire on $($EndDate.ToShortDateString()).</p>
<p>Please contact Entra (previously known as Azure AD) Administrators and take the necessary actions to renew or replace the secret or certificate before it expires.</p>
<p>Details to provide the administrators:</p>
<ul>
<li>Application Name: $AppName</li>
<li>Secret or Certificate Name: $SecretOrCertName</li>
<li>Secret or Certificate ID: $SecretOrCertId</li>
<li>Expiration Date: $($EndDate.ToShortDateString())</li>
</ul>
<p><span style="color: red;">Please do not reply to this email, this mailbox is not monitored.</span></p>
<p>Thank you,<br>Your IT Team</p>
</body>
</html>
"@

    Send-MailMessage -SmtpServer $SmtpServer -From $From -To $To -Subject $Subject -Body $Body -BodyAsHtml
}

# Function to send summary email
function Send-SummaryEmail {
    param (
        [string]$To,
        [string]$Body
    )

    $Subject = "Summary: Secrets and Certificates Expiring in the Next 30 Days"
    Send-MailMessage -SmtpServer $SmtpServer -From $From -To $To -Subject $Subject -Body $Body -BodyAsHtml
}

# Get the current date
$Now = Get-Date

# Query all applications
$Applications = Get-MgApplication -All

# Initialize a variable to store the summary of expiring secrets and certificates
$SummaryBody = @"
<html>
<body>
<p>Hello,</p>
<p>The following secrets and certificates are expiring in the next 30 days:</p>
<table border="1">
<tr>
<th>Application Name</th>
<th>Secret or Certificate Name</th>
<th>Secret or Certificate ID</th>
<th>Expiration Date</th>
</tr>
"@

# Process each application
foreach ($App in $Applications) {
    $AppName = $App.DisplayName
    $AppID   = $App.Id
    $ApplID  = $App.AppId

    $AppCreds = Get-MgApplication -ApplicationId $AppID
    $Secrets = $AppCreds.PasswordCredentials
    $Certs   = $AppCreds.KeyCredentials

    foreach ($Secret in $Secrets) {
        $StartDate  = $Secret.StartDateTime
        $EndDate    = $Secret.EndDateTime
        $SecretName = $Secret.DisplayName
        $SecretId   = $Secret.KeyId

        $Owners = Get-MgApplicationOwner -ApplicationId $App.Id

        if ($Owners.Count -eq 0) {
            # No owner information, send to default email
            $FirstName = "Admin"
            Send-ExpirationAlert -To $DefaultEmail -FirstName $FirstName -AppName $AppName -SecretOrCertName $SecretName -SecretOrCertId $SecretId -EndDate $EndDate
        } else {
            foreach ($Owner in $Owners) {
                $Username = $Owner.AdditionalProperties.userPrincipalName
                $OwnerID  = $Owner.Id

                if ($null -eq $Username) {
                    $Username = $Owner.AdditionalProperties.displayName
                    if ($null -eq $Username) {
                        $Username = '**<This is an Application>**'
                    }
                }

                # Extract first name from givenName or user principal name
                $FirstName = $Owner.AdditionalProperties.givenName
                if ($null -eq $FirstName -or $FirstName -eq '') {
                    $FirstName = $Username.Split('@')[0].Split('.')[0]
                }

                $RemainingDaysCount = ($EndDate - $Now).Days

                if ($RemainingDaysCount -le $DaysUntilExpiration -and $RemainingDaysCount -ge 0) {
                    if ($Username -ne '<<No Owner>>') {
                        Send-ExpirationAlert -To $Username -FirstName $FirstName -AppName $AppName -SecretOrCertName $SecretName -SecretOrCertId $SecretId -EndDate $EndDate
                    }
                }
            }
        }

        # Add to summary if expiring in the next 30 days
        if ($RemainingDaysCount -le $DaysUntilExpiration -and $RemainingDaysCount -ge 0) {
            $SummaryBody += @"
<tr>
<td>$AppName</td>
<td>$SecretName</td>
<td>$SecretId</td>
<td>$($EndDate.ToShortDateString())</td>
</tr>
"@
        }
    }

    foreach ($Cert in $Certs) {
        $StartDate  = $Cert.StartDateTime
        $EndDate    = $Cert.EndDateTime
        $CertName   = $Cert.DisplayName
        $CertId     = $Cert.KeyId

        $Owners = Get-MgApplicationOwner -ApplicationId $App.Id

        if ($Owners.Count -eq 0) {
            # No owner information, send to default email
            $FirstName = "Admin"
            Send-ExpirationAlert -To $DefaultEmail -FirstName $FirstName -AppName $AppName -SecretOrCertName $CertName -SecretOrCertId $CertId -EndDate $EndDate
        } else {
            foreach ($Owner in $Owners) {
                $Username = $Owner.AdditionalProperties.userPrincipalName
                $OwnerID  = $Owner.Id

                if ($null -eq $Username) {
                    $Username = $Owner.AdditionalProperties.displayName
                    if ($null -eq $Username) {
                        $Username = '**<This is an Application>**'
                    }
                }

                # Extract first name from givenName or user principal name
                $FirstName = $Owner.AdditionalProperties.givenName
                if ($null -eq $FirstName -or $FirstName -eq '') {
                    $FirstName = $Username.Split('@')[0].Split('.')[0]
                }

                $RemainingDaysCount = ($EndDate - $Now).Days

                if ($RemainingDaysCount -le $DaysUntilExpiration -and $RemainingDaysCount -ge 0) {
                    if ($Username -ne '<<No Owner>>') {
                        Send-ExpirationAlert -To $Username -FirstName $FirstName -AppName $AppName -SecretOrCertName $CertName -SecretOrCertId $CertId -EndDate $EndDate
                    }
                }
            }
        }

        # Add to summary if expiring in the next 30 days
        if ($RemainingDaysCount -le $DaysUntilExpiration -and $RemainingDaysCount -ge 0) {
            $SummaryBody += @"
<tr>
<td>$AppName</td>
<td>$CertName</td>
<td>$CertId</td>
<td>$($EndDate.ToShortDateString())</td>
</tr>
"@
        }
    }
}

# Close the HTML table and body
$SummaryBody += @"
</table>
<p>Thank you,<br>Your IT Team</p>
</body>
</html>
"@

# Send the summary email
Send-SummaryEmail -To $DefaultEmail -Body $SummaryBody

Monitoring Entra application secret expirations may not be the flashiest part of your security strategy, but it’s one of the most crucial. It’s also one of those tasks that’s easy to automate, but costly to ignore.

If you’re currently relying on manual processes or using a Logic App that only pings one owner, consider leveling up your approach. A bit of PowerShell and planning can save you hours of downtime, reduce late-night incident calls, and help keep your environment secure.

Thank you for stopping by. ✌️